ФРАКТАЛЬНА ГЕОМЕТРІЯ – ДИВОВИЖНЕ ЧУДО
Фрактал ( лат. fractus - подрібнений, зламаний, розбитий) - складна геометрична фігура, що володіє властивістю самоподібності, тобто складена з декількох частин, кожна з яких подібна всьому тілі цілком. У більш широкому сенсі під фракталами розуміють безлічі точок у евклідовому просторі, мають дробову метричну розмірність, або метричну розмірність, відмінну від топологічної. Тобто фрактал - це нескінченно самоподобна геометрична фігура, кожен фрагмент якої повторюється при зменшенні масштабу.
Термін
Слід зазначити, що слово "фрактал" не є математичним терміном і не має загальноприйнятого суворого математичного визначення. Воно може вживатися, коли розглянута фігура володіє якими-небудь з перерахованих нижче властивостей:
- Володіє нетривіальною структурою на всіх масштабах. У цьому відмінність від регулярних фігур (таких, як окружність, еліпс,): якщо ми розглянемо невеликий фрагмент регулярної фігури в дуже великому масштабі, він буде схожий на фрагмент прямій. Для фрактала збільшення масштабу не веде до спрощення структури, на всіх шкалах ми побачимо однаково складну картину.
- Є самоподобной або наближено самоподобной.
- Володіє дробової метричної розмірністю або метричної розмірністю, яка перевершує топологічну.
Багато об'єктів в природі мають фрактальними властивостями, наприклад, узбережжя, хмари, крони дерев, сніжинки, кровоносна система і система альвеол людини або тварин. Фрактали, особливо на площині, популярні завдяки поєднанню краси з простотою побудови за допомогою комп'ютера.
Класифікація
- Алгебраїчні фрактали
- Геометричні фрактали
- Крива Коха (сніжинка Коха)
- Крива Леві
- Крива Гільберта
- Ламана (крива) дракона (Фрактал Хартера-Хейтуея)
- Безліч Кантора
- Трикутник Серпінського
- Килим Серпінського
- Дерево Піфагора
- Круговий фрактал
- Стохастичні фрактали
- Рукотворні фрактали
- Природні фрактали
- Детерміновані фрактали
- Недетермінірованние фрактали
Історія
Термін ″фрактал″ придумав у 1975р. французький математик Бенуа Мандельброт(1924-2010), використавши його в книзі «Фрактальна геометрія природи».
Вчений народився у Варшаві, в 1936 році емігрував з родиною до Франції. Після початку війни був змушений переїхати на південь країни − м.Тюль, де пішов у школу. Згодом, завдяки неабияким здібностям до геометрії, Б.Мандельброт стає студентом Сорбонни. Після цього, переїхавши у США, він закінчує Каліфорнійський інститут технології. У 1952 р. отримав докторський ступінь в одному з університетів Парижа. В 1955 р. одружився з Альетт Каган і переїхав у Женеву. З 1958 Б.Мандельброт проживає і працює в США. Він займається теорією ігор, економікою, географією, астрономією, фізикою...
У 1993р. стає лауреатом премії Вольфа з фізики ″ за усвідомлення широкого розповсюдження фракталів та розвиток математичних методів для їх опису; він змінив наш погляд на природу.″ У 2003 − лауреатом Премії Японії. 14 жовтня 2010р його не стало.
Вчений народився у Варшаві, в 1936 році емігрував з родиною до Франції. Після початку війни був змушений переїхати на південь країни − м.Тюль, де пішов у школу. Згодом, завдяки неабияким здібностям до геометрії, Б.Мандельброт стає студентом Сорбонни. Після цього, переїхавши у США, він закінчує Каліфорнійський інститут технології. У 1952 р. отримав докторський ступінь в одному з університетів Парижа. В 1955 р. одружився з Альетт Каган і переїхав у Женеву. З 1958 Б.Мандельброт проживає і працює в США. Він займається теорією ігор, економікою, географією, астрономією, фізикою...
У 1993р. стає лауреатом премії Вольфа з фізики ″ за усвідомлення широкого розповсюдження фракталів та розвиток математичних методів для їх опису; він змінив наш погляд на природу.″ У 2003 − лауреатом Премії Японії. 14 жовтня 2010р його не стало.
У середині 1960-х років Мандельброт розробив теорію так званої «фрактальної геометрії» або «геометрії природи». Її метою був аналіз зламаних, зморшкуватих та нечітких форм.В перекл. з лат. (fractus) - подрібнений, зламаний, розбитий.
Одним з перших хто описав фрактали в 1918 році був французький математик Гастон Жюліа. Але в нього були відсутні будь-які зображення. Комп'ютери зробили видимим те, що не могло бути дослідженим за часів Жюліа. Фрактали використовуються при аналізі та класифікації сигналів складної форми, що виникають у різних областях, наприклад, при аналізі коливань курсу валют в економіці, у фізиці твердого тіла, в динаміці активних середовищ, для стиснення зображень. Структури, схожі на фрактали, можна виявити в оточуючій нас природі: межі хмар, межі морських узбереж, турбулентні потоки в рідинах, тріщини в деяких породах, зимові візерунки на склі, зображення структури деяких речовин, отримані за допомогою електронного мікроскопа, кровоносна система серцевого м'яза, кореневі системи дерев і т.д. Головною ознакою фракталів є те, що вони володіють нетривіальною структурою при будь-якому масштабі. В цьому й полягає їхня відмінність від регулярних геометричних фігур (коло, еліпс і т. д.). Іншими словами можна сказати, що коли збільшуємо або зменшуємо масштаб перегляду фракталів, то їх вигляд не змінюється, якщо ж ми розглянемо невеличкий фрагмент регулярної фігури в дуже великому масштабі, він буде схожий на фрагмент прямої.
Одним з перших хто описав фрактали в 1918 році був французький математик Гастон Жюліа. Але в нього були відсутні будь-які зображення. Комп'ютери зробили видимим те, що не могло бути дослідженим за часів Жюліа. Фрактали використовуються при аналізі та класифікації сигналів складної форми, що виникають у різних областях, наприклад, при аналізі коливань курсу валют в економіці, у фізиці твердого тіла, в динаміці активних середовищ, для стиснення зображень. Структури, схожі на фрактали, можна виявити в оточуючій нас природі: межі хмар, межі морських узбереж, турбулентні потоки в рідинах, тріщини в деяких породах, зимові візерунки на склі, зображення структури деяких речовин, отримані за допомогою електронного мікроскопа, кровоносна система серцевого м'яза, кореневі системи дерев і т.д. Головною ознакою фракталів є те, що вони володіють нетривіальною структурою при будь-якому масштабі. В цьому й полягає їхня відмінність від регулярних геометричних фігур (коло, еліпс і т. д.). Іншими словами можна сказати, що коли збільшуємо або зменшуємо масштаб перегляду фракталів, то їх вигляд не змінюється, якщо ж ми розглянемо невеличкий фрагмент регулярної фігури в дуже великому масштабі, він буде схожий на фрагмент прямої.
Фрактали у природі
Бронхіальне дерево
Вид спереду на трахею і бронхи
- Мережа кровоносних судин
- Альвеоли
Фрактальна форма підвиду цвітної капусти (Brassica cauliflora)
Викорстання фракталів в комп’ютерній графіці
Існують алгоритми стиснення зображення за допомогою фракталів. Вони засновані на ідеї про те, що замість самого зображення можна зберігати стискуюче відображення, для якого це зображення (або деякий близьке до нього) є нерухомою точкою. Один з варіантів даного алгоритму був використаний фірмою Microsoft при виданні своєї енциклопедії, але великого поширення ці алгоритми не отримали.
Фрактали широко застосовуються в комп'ютерній графіці для побудови зображень природних об'єктів, таких, як дерева, кущі, гірські ландшафти, поверхні морів і так далі. Існує безліч програм, що служать для генерації фрактальних зображень, Генератор фракталів (програма).
Немає коментарів:
Дописати коментар